Abstract

Increasing development of infrastructure in Indonesia has driven the need for effective ground improvement methods to accelerate the consolidation of soft soil, which is estimated to occupy around 10% of the country’s land area. A prefabricated vertical drain combined with vacuum preloading is among the most effective methods for this purpose. However, the prefabricated vertical drain creates a smear zone in the surrounding soil area during installation. This study examines the effectiveness of a newly developed mandrel system in reducing the smear zone during prefabricated vertical drain installation. Large-scale consolidation tests at a macro level and microstructure analysis using scanning electron microscopy at a micro level were employed to investigate the effect of soil water content and shear strength. The results show that the water content and shear strength of the soft soil gradually increased in the inner smear zone and transition zone, while both decreased in the radial distance. Furthermore, the soil structure underwent a transformation in which the particle area and pore area became a closed flake structure, and apparent agglomeration occurred. The test results indicate that the newly developed mandrel system can effectively reduce the smear zone. The macro to micro test results demonstrated that the mandrel system is successful in reducing the smear zone effect.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.