Abstract

The hydrogen release behavior of the quaternary hydride LiB(0.33)N(0.67)H(2.67) has been successfully improved through the incorporation of small quantities of noble metal. Adding 5 wt % Pd either as Pd metal particles or as PdCl(2) reduced the temperature T(1/2) corresponding to the midpoint of the hydrogen release reaction by DeltaT(1/2) = -43 degrees C and -76 degrees C, respectively. PtCl(2) and Pt nanoparticles supported on a Vulcan carbon substrate proved to be even more effective, with DeltaT(1/2) = -90 degrees C. The amount of NH(3) released during dehydrogenation is reduced compared to that from additive-free material, and, more importantly, at temperatures below 210 degrees C hydrogen is released with no detectable NH(3). In contrast to additive-free LiB(0.33)N(0.67)H(2.67), which melts completely above 190 degrees C and releases hydrogen from the liquid state only above approximately 250 degrees C, hydrogen release from LiB(0.33)N(0.67)H(2.67) + 5 wt % Pt/Vulcan carbon is accompanied by partial melting plus a cascade through a series of solid intermediate phases. Calorimetric measurements indicate that both additive-free and Pt-added LiB(0.33)N(0.67)H(2.67) release hydrogen exothermically, and hence the reverse reaction is thermodynamically unfavorable. By exposing partially dehydrogenated samples to high H(2) pressures at modest temperatures, fractional hydrogen uptake (roughly 15% of the released hydrogen) has been achieved. The mechanism by which noble metals promote hydrogen release is not known, but the behavior is consistent with that expected for a catalyst, including a large effect with small additions and saturation of the effect at low concentration.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.