Abstract

Edge computingZivkovic, Miodrag Bezdan, Timea Strumberger, Ivana Bacanin, Nebojsa Venkatachalam, K. is a relatively novel technology, which is closely related to the concepts of the Internet of things and cloud computing. The main purpose of edge computing is to bring the resources as close as possible to the clients, to the very edge of the cloud. By doing so, it is possible to achieve smaller response times and lower network bandwidth utilization. Workflow scheduling in such an edge–cloud environment is considered to be an NP-hard problem, which has to be solved by a stochastic approach, especially in the scenario of multiple optimization goals. In the research presented in this paper, a modified Harris hawks optimization algorithm is proposed and adjusted to target cloud–edge workflow scheduling problem. Simulations are carried out with two main objectives—cost and makespan. The proposed experiments have used real workflow models and evaluated the proposed algorithm by comparing it to the other approaches available in the recent literature which were tested in the same simulation environment and experimental conditions. Based on the results from conducted experiments, the proposed improved Harris hawks optimization algorithm outperformed other state-of-the-art approaches by reducing cost and makespan performance metrics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.