Abstract

Traditional systems of handwriting recognition have relied on handcrafted features and a large amount of prior knowledge. Training an Optical character recognition (OCR) system based on these prerequisites is a challenging task. Research in the handwriting recognition field is focused around deep learning techniques and has achieved breakthrough performance in the last few years. Still, the rapid growth in the amount of handwritten data and the availability of massive processing power demands improvement in recognition accuracy and deserves further investigation. Convolutional neural networks (CNNs) are very effective in perceiving the structure of handwritten characters/words in ways that help in automatic extraction of distinct features and make CNN the most suitable approach for solving handwriting recognition problems. Our aim in the proposed work is to explore the various design options like number of layers, stride size, receptive field, kernel size, padding and dilution for CNN-based handwritten digit recognition. In addition, we aim to evaluate various SGD optimization algorithms in improving the performance of handwritten digit recognition. A network’s recognition accuracy increases by incorporating ensemble architecture. Here, our objective is to achieve comparable accuracy by using a pure CNN architecture without ensemble architecture, as ensemble architectures introduce increased computational cost and high testing complexity. Thus, a CNN architecture is proposed in order to achieve accuracy even better than that of ensemble architectures, along with reduced operational complexity and cost. Moreover, we also present an appropriate combination of learning parameters in designing a CNN that leads us to reach a new absolute record in classifying MNIST handwritten digits. We carried out extensive experiments and achieved a recognition accuracy of 99.87% for a MNIST dataset.

Highlights

  • In the current age of digitization, handwriting recognition plays an important role in information processing

  • One needs to work with different algorithms in order to find out the exact parameters for data pre-processing

  • It has been observed that the proposed model of Convolutional neural networks (CNNs) architecture with three layers delivered better recognition accuracy of 99.89% with the adaptive moment estimation (Adam) optimizer

Read more

Summary

Introduction

In the current age of digitization, handwriting recognition plays an important role in information processing. The main applications are vehicle license-plate recognition, postal letter-sorting services, Cheque truncation system (CTS) scanning and historical document preservation in archaeology departments, old documents automation in libraries and banks, etc. All these areas deal with large databases and demand high recognition accuracy, lesser. The ability to automatically detect the important features of an object (here an object can be an image, a handwritten character, a face, etc.) without any human supervision or intervention makes them (CNNs) more efficient than their predecessors (Multi layer perceptron (MLP), etc.). The high capability of hierarchical feature learning results in a highly efficient CNN

Objectives
Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.