Abstract

An improved finite difference (FD) procedure to predict the dynamic response of concrete members reinforced with fiber reinforced polymer (FRP) bars under explosion is proposed. This method no longer needs the empirical formulae of the moment-curvature relationship, which is only suitable for concrete members reinforced with steel bars but inappropriate for those reinforced with FRP bars. The equilibrium of the horizontal force of the structural element, considering the strain rate effects of the concrete and the reinforcing bars, is established to calculate the depth of the neutral axis based on a numerical solution of nonlinear equations. A layered-section-based analysis model is used to calculate the strain rate effect of the compressive concrete. The Euler-Bernoulli’s beam theory is solved numerically using an explicit FD scheme. The accuracy of the FD model is validated by the experiments of the concrete members reinforced with steel bars and FRP bars, respectively. The FD results are also compared with those obtained by single-degree-of-freedom (SDOF) analysis and finite element (FE) analysis, respectively. The FD procedure is accurate, applicable and convenient to predict the dynamic responses of the flexural concrete members reinforced with FRP bars, as well as those of the members reinforced with steel bars.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.