Abstract

In this work, the error behavior of operator splitting methods is analyzed for highly-oscillatory differential equations. The scope of applications includes time-dependent nonlinear Schrödinger equations, where the evolution operator associated with the principal linear part is highly-oscillatory and periodic in time. In a first step, a known convergence result for the second-order Strang splitting method applied to the cubic Schrödinger equation is adapted to a wider class of nonlinearities. In a second step, the dependence of the global error on the decisive parameter 0 > ε > > 1 0 > \varepsilon >\!\!> 1 , defining the length of the period, is examined. The main result states that, compared to established error estimates, the Strang splitting method is more accurate by a factor ε \varepsilon , provided that the time stepsize is chosen as an integer fraction of the period. This improved error behavior over a time interval of fixed length, which is independent of the period, is due to an averaging effect. The extension of the convergence result to higher-order splitting methods and numerical illustrations complement the investigations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.