Abstract

A new family of optimized encoding pulses for Bloch–Siegert (BS) |B1+| mapping is introduced, as well as an algorithm to design them. The pulses are designed by numerical maximization of BS sequence sensitivity, subject to constraints that ensure low on-resonance excitation. The pulses are in all cases characterized by a constant envelope and U-shaped frequency sweep. They are validated in simulations, 7T in vivo experiments, and an experiment to measure their on-resonance excitation, and are compared to a Fermi pulse conventionally used in the BS method. The pulses are shown to produce larger phase shifts in a shorter time and with lower on-resonance excitation than the Fermi pulse, which results in lower SAR and improved |B1+| accuracy in areas of the body with large main field inhomogeneities.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.