Abstract

The APPLE-Knot undulator has been proposed to reduce the large on-axis heat load of the APPLE-II at very low photon energy. However, the current designs have an inherent non-zero second field integral due to the Knot sections, resulting in a transverse deflection of the electron beam throughout the undulator. For a long device, such a deviation can degrade the brightness and power distribution of the outgoing beam. Here, a new end-Knot section is presented to compensate for the electron trajectory, and the undulator is symmetrized to balance the output power distribution. The performance of the APPLE-Knot with symmetric power distribution is investigated. The partial power, flux, and polarization are compared with the APPLE-II. In the linear mode, APPLE-Knot shows a pronounced reduction of the partial power, with a similar flux to the APPLE-II. The symmetric power density distribution reduces the hotspot by 41%, with a flux loss of less than 5%. In the circular mode and at low photon energies, the flux is limited by the phase error of the symmetric design.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.