Abstract

Three samples, LiNi0.5Mn1.5O4, LiNi0.4Mn1.4Co0.2O4, and LiNi0.4Mn1.4Cr0.15Co0.05O4, were prepared by sol–gel method and characterized by powder X-ray diffraction, Fourier transformed infrared spectroscope, scanning electron microscopy, Brunauer–Emmett–Teller surface area, four-probe resistance, cyclic voltammetry, electrochemical impedance spectroscopy, and charge–discharge test. It is found that the co-doped sample LiNi0.4Mn1.4Cr0.15Co0.05O4 exhibits an improved performance compared with the Co-doped sample LiNi0.4Mn1.4Co0.2O4 and the undoped sample LiNi0.5Mn1.5O4, especially at elevated temperature. At 25 °C, the discharge capacity of LiNi0.4Mn1.4Cr0.15Co0.05O4 is 130 mAh g−1 at 0.1 C and 103 mAh g−1 at 10 C. At an elevated temperature (55 °C), its 1 C discharge capacity is 136 mAh g−1 and maintains 95.6 % of its initial capacity after 100 cycles. Compared with the reported results of LiNi0.4Mn1.4Co0.2O4 and LiNi0.475Mn1.475Co0.05O4, the co-doped sample LiNi0.4Mn1.4Cr0.15Co0.05O4, with least content of Co, 0.05, possesses not only the high C-rate capacity but also the structural stability. The mechanism on the electrochemical performance improvement of LiNi0.5Mn1.5O4 by the co-doping was discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.