Abstract

The effect of magnetic fields on the optical output power of flip-chip light-emitting diodes (LEDs) with InGaN/GaN multiple quantum wells (MQWs) was investigated. Films and circular disks comprising ferromagnetic cobalt/platinum (Co/Pt) multilayers were deposited on a p-ohmic reflector to apply magnetic fields in the direction perpendicular to the MQWs of the LEDs. At an injection current of 20 mA, the ferromagnetic Co/Pt multilayer film increased the optical output power of the LED by 20% compared to an LED without a ferromagnetic Co/Pt multilayer. Furthermore, the optical output power of the LED with circular disks was 40% higher at 20 mA than the output of the LED with a film. The increase of the optical output power of the LEDs featuring ferromagnetic Co/Pt multilayers is attributed to the magnetic field gradient in the MQWs, which increases the carrier path in the MQWs. The time-resolved photoluminescence measurement indicates that the improvement of optical output power is owing to an enhanced radiative recombination rate of the carriers in the MQWs as a result of the magnetic field gradient from the ferromagnetic Co/Pt multilayer.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.