Abstract

Dual-image reversible data hiding (RDH) is a technique for hiding important messages. This technology can be used to safely deliver secret messages to the recipient through dual images in an open network without being easily noticed. The recipient of the image must receive the two stego-images before the secret message can be completely retrieved. Imperceptibility is one of the main advantages of data hiding technology; to increase the imperceptibility, the quality requirements of the stego-images are relatively important. A dual steganographic image RDH method, called a DS-CF scheme that can achieve a better steganographic image quality using the center folding (CF) strategy. In this paper, we developed a translocation and switching strategy (TaS) to shorten the distances between the stego-pixel coordinates and the cover pixel coordinates after information being hidden. Compared with the DS-CF scheme, our proposed DS-TaS scheme can effectively improve the quality of the steganographic images at the same level of embedding capability. The experimental results show that the PSNR of our DS-TaS scheme at = 1 was 55.66 dB, which is an increase of 1.5 dB, and is 51.43 dB for = 2, 46.66 dB for = 3, and 40.91 dB for = 4. In addition, the PSNR values of the stego images was increased by 1.5, 0.29, 0.29, and 0.19 dB, respectively. This shows that our proposed dual-image RDH method can optimize the visual quality of the stego-images and is better than many other dual-image RDH techniques.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.