Abstract

The modification of perfluorinated proton exchange membranes (e.g. Nafion) utilizing a layer by layer (LbL) electrostatic assembly of oppositely charged biophilic polymers such as poly-l-lysine as positive layer and dsDNA as a negative layer is developed to protect the interface between the catalyst layer and the membrane in a low temperature fuel cell. Various physicochemical measurements including water uptake, proton conductivity and surface tension were investigated for both the as-received Nafion and the biopolymeric LbL modified Nafion. The smaller water contact angle and the less swelling characteristics of the biopolymer modified Nafion membrane was founded compared to that of as-received Nafion. This clearly indicates that the more hydrophilic surface of biopolymeric layers on Nafion plays an important role in the enhanced dimensional stability. In addition, a potential hypothesis explaining the higher proton conductivity from the LbL biopolymeric film coated Nafion is suggested.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.