Abstract

Algorithms for point target detection in hyperspectral images use the inverse covariance matrix in order to separate a detected pixel from it surrounding noise. The inverse covariance matrix can be implemented from all the pixels or from the close surroundings of the examined pixel. We compare the different methods and conclude which method brings the best results.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.