Abstract

An improved coupled-mode formulation based on the ideal modes of the coupled waveguides (ideal composite modes) is presented. In comparison with the formulation based on the ideal modes of the individual waveguides (ideal waveguide modes), the formulation in terms of composite modes is more rigorous and yields a more accurate grating period and coupling lengths. In addition, the radiation loss due to input and output junctions can in the composite-mode formulation. A new to the coupled-mode equations is derived in which all the spatial harmonics generated by the periodic grating are taken into account. The power exchange between the waveguides is examined by considering the input and the output conditions. The phase-matching conditions and the coupling lengths are calculated and compared with the analysis in terms of the waveguide modes. The grating period predicted by the waveguide-mode formulation agrees very well with that by the composite-mode formulation; however, dramatically different coupling lengths are predicted by the two formulations. >

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.