Abstract

For many chaotic systems, accurate calculation of the correlation dimension from measured data is difficult because of very slow convergence as the scale size is reduced. This problem is often caused by the highly nonuniform measure on the attractor. This paper proposes a method for collecting data at large scales and extrapolating to the limit of zero scale. The result is a vastly reduced required number of data points for a given accuracy in the measured dimension. The method is illustrated in detail for one-dimensional maps and then applied to more complicated maps and flows. Values are given for the correlation dimension of many standard chaotic systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.