Abstract

Inertial angle of attack (AoA) devices currently in use at NASA Langley Research Center (LaRC) are subject to inaccuracies due to centrifugal accelerations caused by model dynamics, also known as sting whip. Recent literature suggests that these errors can be as high as 0.25 deg. With the current AoA accuracy target at LaRC being 0.01 deg., there is a dire need for improvement. With other errors in the inertial system (temperature, rectification, resolution, etc.) having been reduced to acceptable levels, a system is currently being developed at LaRC to measure and correct for the sting-whip-induced errors. By using miniaturized piezoelectric accelerometers and magnetohydrodynamic rate sensors, not only can the total centrifugal acceleration be measured, but yaw and pitch dynamics in the tunnel can also be characterized. These corrections can be used to determine a tunnel's past performance and can also indicate where efforts need to be concentrated to reduce these dynamics. Included in this paper are data on individual sensors, laboratory testing techniques, package evaluation, and wind tunnel test results on a High Speed Research (HSR) model in the Langley 16-Foot Transonic Wind Tunnel.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.