Abstract
A combustion model of boron particles for detailed Computational Fluid Dynamics (CFD) based simulations of ducted rocket combustion chambers is studied. It is aimed to construct a model for combustion of boron containing gas mixtures ejected from a solid propellant gas generator. This model includes all main physical processes required to define an accurate particle combustion simulation. The reaction rate modeling in similar, previous studies are improved for ramjet combustion chambers and this model provides better predictions for all particle sizes. The reactions in the ignition stage are reformulated as competing reactions for consumption of (BO)n polymers. Large discrepancies between the experimental and calculated ignition times for the 3 μm diameter particles in similar studies are eliminated. The developed model is added to a commercial CFD solver and can be used along with gas phase detailed turbulent combustion simulations of ducted rocket combustion chambers. Our simulation approach has provided us an effective tool, which allows us to forecast the effects of the changes on the performance and efficiency. This detailed combustion model is validated with existing experimental results available in open literature. The model is also compared with the results of similar previous studies.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.