Abstract

The vertical charge transport through Si/SiOx multiple quantum wells (QWs) is investigated. Upon thermal annealing, segregation of excess Si from the SiOx layers leads to the formation of highly conductive pathways between Si grains from adjacent QWs separated by ultrathin silicon oxide barriers with barrier heights of 0.53–0.65 eV. Compared to stoichiometric Si/SiO2 layer stacks, conductivity is increased by up to ten orders of magnitude, which opens the way to an efficient charge carrier extraction in photovoltaic systems with distinct quantum confinement.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.