Abstract

Different inorganic acids were used to activate sepiolite, and the acid-activated sepiolites supported nickel and potassium bimetallic catalysts were prepared. Nitrogen adsorption-desorption, hydrogen chemisorption, ammonia temperature programmed desorption (NH3-TPD), temperature programmed reduction (TPR), powder X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier Transform Infrared Spectroscopy (FTIR) and energy dispersive X-ray (EDX) were used to characterize the catalysts. The catalytic performance of the acid-activated sepiolite supported K-Ni bimetallic catalysts were investigated in 1,6-hexanedinitrile (HDN) hydrogenation in liquid phase. It was revealed that the potassium could increase the alkalinity of the catalyst with the aim of inhibiting the formation of the 1-azacycloheptane (ACH). And the addition of potassium reduces the particle size of nickel and improves its dispersion. Compared with hydrochloric acid and sulfuric acid, nitric acid treatment increases more silanol groups (SiOH) on the sepiolite surface, which is helpful to nickel particles adsorption and dispersion. Nitric acid activated sepiolite supported nickel and potassium bimetallic catalysts (K-Ni/NASEP) present the best catalytic performance, the conversion of HDN comes up to 92.0% under moderate conditions of lower temperature and pressure, the selectivity to 6-aminocapronitrile (ACN) and 1,6-hexanediamine (HDA) is up to 95.2%.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.