Abstract
Let G be a graph with n vertices, let \(S={\mathbb {K}}[x_1,\dots ,x_n]\) be the polynomial ring in n variables over a field \({\mathbb {K}}\) and let I(G) denote the edge ideal of G. For every collection \({\mathcal {H}}\) of connected graphs with \(K_2\in {\mathcal {H}}\), we introduce the notions of \({{\mathrm{ind-match}}}_{{\mathcal {H}}}(G)\) and \({{\mathrm{min-match}}}_{{\mathcal {H}}}(G)\). It will be proved that the inequalities \({{\mathrm{ind-match}}}_{\{K_2, C_5\}}(G)\le \mathrm{reg}(S/I(G))\le {{\mathrm{min-match}}}_{\{K_2, C_5\}}(G)\) are true. Moreover, we show that if G is a Cohen–Macaulay graph with girth at least five, then \(\mathrm{reg}(S/I(G))={{\mathrm{ind-match}}}_{\{K_2, C_5\}}(G)\). Furthermore, we prove that if G is a paw-free and doubly Cohen–Macaulay graph, then \(\mathrm{reg}(S/I(G))={{\mathrm{ind-match}}}_{\{K_2, C_5\}}(G)\) if and only if every connected component of G is either a complete graph or a 5-cycle graph. Among other results, we show that for every doubly Cohen–Macaulay simplicial complex, the equality \(\mathrm{reg}({\mathbb {K}}[\Delta ])=\mathrm{dim}({\mathbb {K}}[\Delta ])\) holds.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.