Abstract

As a NP-hard combinatorial problem, nurse scheduling problem (NSP) is a well-known personnel scheduling task whose goal is to create a nurse schedule under a series of hard and soft constraints in a practical world. In this paper, a variant of structure-redesigned-based bacterial foraging optimization (SRBFO) with a dynamic topology structure (SRBFO-DN) is employed for solving nurse scheduling problem (NSP). In SRBFO-DN, each bacterium achieves cooperation by information exchange mechanism switching the topology structure between star topology and ring topology. A special encoding operation of bacteria in SRBFO-DN is adopted to transform position vectors into feasible solutions, which can make SRBFO-DN successfully dealing with this typical difficult and discrete NSP. Experiment results obtained by SRBFO-DN compared with SRBFO and SPSO demonstrated that the efficiency of the proposed SRBFO-DN algorithm is better than other two algorithms for dealing with NSP.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.