Abstract

This paper aims to improve the robustness of the air-gap controller for a solid immersion lens (SIL)-based near-field (NF) storage system against dynamic disturbances, such as external shocks. The robust control system is essential in NF data storage technology because the nanoscale gap distance between the SIL and the disk is 50 nm or less. Also, the air-gap distance must be maintained without physical contact between the SIL and the disk to evaluate the efficient reading and recording signals when an external shock is applied. Therefore, we propose an improved air-gap control algorithm with an acceleration feedforward controller (AFC) using time delay to maintain the nanoscale air-gap distance without collision for a 5.76 G at 10 ms shock. Thus, the anti-shock control performance for the SIL-based NF storage system in the presence of external shocks is markedly improved. Furthermore, to enhance the performance of the anti-shock air-gap control with AFC using time delay, we use the AFC using time delay with a double disturbance observer (DOB). As a result, the air-gap distance is controlled without contact for a 6.85 G@10 ms shock.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.