Abstract

Attention Deficit Hyperactivity Disorder (ADHD) is a widespread neurobehavioral disorder affecting children and adolescents, requiring early detection for effective treatment. EEG connectivity measures can reveal the interdependencies between EEG recordings, highlighting brain network patterns and functional behavior that improve diagnostic accuracy. This study introduces a novel ADHD diagnostic method by combining linear and nonlinear brain connectivity maps with an attention-based convolutional neural network (Att-CNN). Pearson Correlation Coefficient (PCC) and Phase-Locking Value (PLV) are used to create fused connectivity maps (FCMs) from various EEG frequency subbands, which are then inputted into the Att-CNN. The attention module is strategically placed after the latest convolutional layer in the CNN. The performance of different optimizers (Adam and SGD) and learning rates are assessed. The suggested model obtained 98.88%, 98.41%, 98.19%, and 98.30% for accuracy, precision, recall, and F1 Score, respectively, using the SGD optimizer in the FCM of the theta band with a learning rate of 1e-1. With the use of FCM, Att-CNN, and advanced optimizers, the proposed technique has the potential to produce trustworthy instruments for the early diagnosis of ADHD, greatly enhancing both patient outcomes and diagnostic accuracy.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.