Abstract
Developments in new information technology have indicated that single manufacturing services are now unable to satisfy users’ multi-objective demands, especially in the process industry. As a new user-centric, service-oriented, demand-driven manufacturing model, cloud manufacturing can provide high-reliability, low-cost, fast-time, high-ability services. This study presents a new Manufacturers to Users (M2U) mode for cloud manufacturing, aiming at solving the core manufacturing service composition optimal selection (MSCOS) problem. The M2U mode expands the service areas and improves its dynamic optimal allocation capabilities of resources by efficient and flexible management and operation of services. Firstly, a comprehensive mathematical evaluation model with four critical quality of service (QoS)-aware indexes (time, reliability, cost, and ability) is constructed. Secondly, a new information entropy immune genetic algorithm (IEIGA) is proposed for the model solution. Finally, nine MSCOS problems of different scales are illustrated so as to compare the performance of the three algorithms. The results prove the effectiveness and superiority of the proposed algorithm and its suitability for solving large-scale service composition problems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: The International Journal of Advanced Manufacturing Technology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.