Abstract

Abstract. This article presents improvements and the development of a postprocessing module for the regional-scale flood mapping tool, AutoRoute. The accuracy of this model to simulate low-, medium-, and high-flow-rate scenarios is demonstrated at seven test sites within the US. AutoRoute is one of the tools used to create high-resolution flood inundation maps at regional to continental scales, but it has previously only been tested using extreme flood events. Modifications to the AutoRoute model and postprocessing scripts are shown to improve accuracy (e.g., average F value increase of 17.5 % for low-flow events) and computational efficiency (simulation time reduced by over 40 %) when compared to previous versions. Although flood inundation results for low-flow events are shown to be comparable with published values (average F value of 63.3 %), the model results tend to be overestimated, especially in flatter terrain. Higher-flow scenarios tend to be more accurately simulated (average F value of 77.5 %). With improved computational efficiency and the enhanced ability to simulate both low- and high-flow scenarios, the AutoRoute model may be well suited to provide first-order estimates of flooding within an operational, regional- to continental-scale hydrologic modeling framework.

Highlights

  • Recent advances have demonstrated continental-scale flow forecasting models capable of simulating thousands of stream reaches simultaneously – e.g., National Water Model (NWM) and Streamflow Prediction Tool (SPT) (Snow et al, 2016; Wahl, 2016)

  • The use of AutoRoute postprocessing script (ARPP) results improved flood inundation accuracy when compared to GIS postprocessing (GISPP)

  • The increase in accuracy of the ARPP method is most evident in the low-flow scenarios where the average F value increases from 45.8 % when using GISPP to 63.3 % when using ARPP

Read more

Summary

Introduction

Recent advances have demonstrated continental-scale flow forecasting models capable of simulating thousands of stream reaches simultaneously – e.g., National Water Model (NWM) (http://water.noaa.gov/about/nwm, last access: 14 February 2020) and Streamflow Prediction Tool (SPT) (Snow et al, 2016; Wahl, 2016). Flow simulations at these scales are beneficial, water managers and emergency personnel benefit more from high-resolution flood inundation maps in making operational decisions (such as evacuation, road closures, etc.). Advanced hydraulic models typically operated from the reach scale to the small-basin scale have shown some success in simulating flood inundation at the continental scale (Wing et al, 2017) but at a high computational cost. Due to low data requirements, fast initial setup times, and lower computational burden, lowercomplexity hydraulic models have been developed in recent years to simulate flood inundation quickly using continentalscale hydrologic modeling outputs. The National Oceanic and Atmospheric Administration (NOAA) National Water Center (NWC) has adopted the Published by Copernicus Publications on behalf of the European Geosciences Union

Objectives
Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.