Abstract

In the United States, colorectal cancer is the second largest cause of cancer death, and accurate early detection and identification of high-risk patients is a high priority. Although fecal screening tests are available, the close relationship between colorectal cancer and the gut microbiome has generated considerable interest. We describe a machine learning method for gut microbiome data to assist in diagnosing colorectal cancer. Our methodology integrates feature engineering, mediation analysis, statistical modeling, and network analysis into a novel unified pipeline. Simulation results illustrate the value of the method in comparison to existing methods. For predicting colorectal cancer in two real datasets, this pipeline showed an 8.7% higher prediction accuracy and 13% higher area under the receiver operator characteristic curve than other published work. Additionally, the approach highlights important colorectal cancer-related taxa for prioritization, such as high levels of Bacteroides fragilis, which can help elucidate disease pathology. Our algorithms and approach can be widely applied for Colorectal cancer prediction using either 16 S rRNA or shotgun metagenomics data.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.