Abstract
With the fast development of processor chips, power-efficient, high-bandwidth, and low-latency interchip interconnects become more and more important. Studies show that the bandwidth of traditional parallel interconnects with low I/O clock frequencies will become bottlenecks in the near future. To solve this problem, two types of high-bandwidth interchip interconnects are developed. Low-swing differential electrical interconnects have widely been used in high-speed I/O designs. On the other hand, optical interconnects promise high bandwidth, low latency, and could improve the chip pin performance for manycore processors. They are becoming potential alternatives for electrical interconnects. This paper systematically models these two types of interconnects in terms of crosstalk noises, attenuation, and receiver sensitivities. Based on the proposed models, we developed optical and electrical interfaces and links (OEIL) and an analysis tool for OEIL. The OEIL can be used to analyze the energy consumption, bandwidth density, and latency of interconnects. Analytical models are verified by the results of published experiments. It shows that the optical interconnects have much higher bandwidth densities than the electrical interconnects. With this feature, the optical interconnects can significantly reduce I/O pin count compared with the electrical interconnects. For example, they can save at least 92% signal pins when connecting chips more than 25 cm (10 in) apart. The energy consumption of optical interconnects is comparable with that of electrical interconnects, and the latency of polymer waveguide-based optical interconnects is 18% less than that of electrical interconnect.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Transactions on Very Large Scale Integration (VLSI) Systems
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.