Abstract

Directionality is key for the functionality of molecular machines, which is often achieved by built-in structural chiralities. Here, we present a scanning tunneling microscopy study of achiral H2Pc and HPc molecules that acquire chirality by adsorption onto a Ag(100) surface. The adsorption-geometry-induced chirality is caused by a -29° (+29°) rotation of the molecules with respect to the [011] substrate direction, resulting in tautomerization processes that preferentially occur in a clockwise (counterclockwise) direction. The directionality is found to be independent of the particular energy and location of charge carrier injection. In contrast to built-in structural chiralities that are fixed by the molecular structure, the direction of proton motion in HPc on Ag(100) can be inverted by a rotation of the molecule on the substrate.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.