Abstract
We study the impact of inhomogeneous hydrogen reionization on the thermal evolution of the intergalactic medium (IGM) using hydrodynamic + radiative transfer simulations where reionization is completed either early (z ~ 9) or late (z ~ 6). In general, we find that low-density gas near large-scale overdensities is ionized and heated earlier than gas in the large-scale, underdense voids. Furthermore, at a later time the IGM temperature is inversely related to the reionization redshift because gas that is heated earlier has more time to cool through adiabatic expansion and Compton scattering. Thus, at the end of reionization the median temperature-density relation is an inverted power-law with slope gamma-1 ~ -0.2, in both models. However, at fixed density, there is up to order unity scatter in the temperature due to the distribution of reionization redshifts. Because of the complex equation-of-state, the evolved IGM temperature-density relations for the redshift range 4 < z < 6 can still have significant curvature and scatter. These features must be taken into account when interpreting the Lyman alpha absorption in high redshift quasar spectra.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.