Abstract

Bacterial cellulose was produced by Acetobacter xylinum (strain TISTR 975). Bacterial cellulose is an interesting material for using as a wound dressing since it provides moist environment to a wound resulting in a better wound healing. However, bacterial cellulose itself has no antimicrobial activity to prevent wound infection. To achieve antimicrobial activity, silver nanoparticles were impregnated into bacterial cellulose by immersing bacterial cellulose in silver nitrate solution. Sodium borohydride was then used to reduce the absorbed silver ion (Ag +) inside of bacterial cellulose to the metallic silver nanoparticles (Ag 0). Silver nanoparticles displayed the optical absorption band around 420 nm. The red-shift and broadening of the optical absorption band was observed when the mole ratio of NaBH 4 to AgNO 3 (NaBH 4:AgNO 3) was decreased, indicating the increase in particle size and particles size distribution of silver nanoparticles that was investigated by transmission electron microscope. The formation of silver nanoparticles was also evidenced by the X-ray diffraction. The freeze-dried silver nanoparticle-impregnated bacterial cellulose exhibited strong the antimicrobial activity against Escherichia coli (Gram-negative) and Staphylococcus aureus (Gram-positive).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.