Abstract

Recent evidence points to the importance of global operations across spatial regions larger than individual cortical receptive fields. Studies of contour integration and motion trajectory detection suggest that network operations between local detectors underlie the encoding of extended contours in space and extended trajectories in motion. Here we ask whether such network operations also occur between second-order-detectors known to exist in visual cortex. We compared performance for stimuli composed of either first-order or second-order elements equated for visibility, and we show that unlike the first-order case, there is little or no linking interaction between local second-order detectors. Near chance performance was found for elements defined by second-order attributes when observers had to identify either an elongated spatial contour or an extended motion trajectory embedded in noise elements. This implies that the network operations thought to underlie these two global tasks receive, at best, an impoverished input from local detectors that encode second-order image attributes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.