Abstract

The effect of variation in the concentration of inorganic phosphate and of the pyridine precursors nicotinamide (NAm) and nicotinic acid (NA) on pyridine nucleotide synthesis was studied using intact human erythrocytes. A wide range of incubation times was employed. The results showed that under physiological conditions the rate of synthesis of NAD from NAm exceeded that from NA twofold, while the reverse situation pertained at higher and unphysiological substrate levels. The two pathways had different regulation points. For NAm the rate-limiting factor was the initial step, namely its conversion into the mononucleotide, while for NA it lay at the second step, conversion of NA mononucleotide (NAMN) to its adenine dinucleotide. At physiological substrate levels the uptake of NA and conversion to NAMN were rapid, while the uptake and conversion of NAm were time dependent. This process was stimulated significantly by inorganic phosphate only for NAm. These results indicate that while NA is the predominant precursor of human erythrocyte NAD at high (unphysiological) substrate and phosphate levels, NAm is more efficient as an NAD precursor under physiological conditions, suggesting an important and hitherto unrecognized role for nicotinamide in NAD synthesis in vivo.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.