Abstract

Turbulent mixing of a passive scalar by forced isotropic turbulence with a prescribed mean scalar gradient is studied in the context of implicit large-eddy simulation. The simulation strategy uses a multi-dimensional compressible flux-corrected transport algorithm, with low wavenumber momentum forcing imposed separately for the solenoidal and dilatational velocity components. Effects of grid resolution on the flow and scalar mixing are investigated at turbulent Mach numbers 0.13 and 0.27. Turbulence metrics are used to show that an implicit large-eddy simulation can accurately capture the mixing transition and asymptotic self-similar behaviors predicted by previous theoretical, laboratory, and direct numerical simulation studies, including asymptotically constant scalar variance and increasing velocity-to-scalar Taylor micro-scales ratio as function of effective Reynolds number determined by grid resolution. The results demonstrate the feasibility of predictive under-resolved simulations of high Reynolds number turbulent scalar mixing using implicit large-eddy simulation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.