Abstract

The numerical solution of nonlinear convection-diffusion equations with nonlocal flux by explicit finite difference methods is costly due to the local spatial convolution within the convective numerical flux and the disadvantageous Courant-Friedrichs-Lewy (CFL) condition caused by the diffusion term. More efficient numerical methods are obtained by applying second-order implicit-explicit (IMEX) Runge-Kutta time discretizations to an available explicit scheme for such models in Carrillo et al. (2015) [13]. The resulting IMEX-RK methods require solving nonlinear algebraic systems in every time step. It is proven, for a general number of space dimensions, that this method is well defined. Numerical experiments for spatially two-dimensional problems motivated by models of collective behaviour are conducted with several alternative choices of the pair of Runge-Kutta schemes defining an IMEX-RK method. For fine discretizations, IMEX-RK methods turn out more efficient in terms of reduction of error versus CPU time than the original explicit method.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.