Abstract

Several radiology artificial intelligence (AI) courses are offered by a variety of institutions and educators. The major radiology societies have developed AI curricula focused on basic AI principles and practices. However, a specific AI curriculum focused on pediatric radiology is needed to offer targeted education material on AI model development and performance evaluation. There are inherent differences between pediatric and adult practice patterns, which may hinder the application of adult AI models in pediatric cohorts. Such differences include the different imaging modality utilization, imaging acquisition parameters, lower radiation doses, the rapid growth of children and changes in their body composition, and the presence of unique pathologies and diseases, which differ in prevalence from adults. Thus, to enhance radiologists’ knowledge of the applications of AI models in pediatric patients, curricula should be structured keeping in mind the unique pediatric setting and its challenges, along with methods to overcome these challenges, and pediatric-specific data governance and ethical considerations. In this report, the authors highlight the salient aspects of pediatric radiology that are necessary for AI education in the pediatric setting, including the challenges for research investigation and clinical implementation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.