Abstract

We study the dynamics of a spin-1/2 particle interacting with a multi-spin environment, modelling the corresponding open system dynamics through a collision-based model. The environmental particles are prepared in individual thermal states, and we investigate the effects of a distribution of temperatures across the spin environment on the evolution of the system, particularly how thermalisation in the long-time limit is affected. We study the phenomenology of the heat exchange between system and environment and consider the information-to-energy conversion process, induced by the system–environment interaction and embodied by the Landauer principle. Furthermore, by considering an interacting-particles environment, we tune the dynamics of the system from an explicit Markovian evolution up to a strongly non-Markovian one, investigating the connections between non-Markovianity, the establishment of system–environment correlations, and the breakdown of the validity of Landauer principle.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.