Abstract

Understanding load transfer mechanisms from the surface of the skin to its deeper layers is crucial in gaining a fundamental insight into damage phenomena related to skin tears, blisters and superficial/deep tissue ulcers. It is unknown how shear stresses in the viable epidermis are conditioned by the skin surface topography and internal microstructure and to which extent their propagation is conditioned by the size of a contacting asperities.In this computational study, these questions were addressed by conducting a series of contact finite element analyses simulating normal indentation of an anatomically-based two-dimensional multi-layer model of the skin by rigid indenters of various sizes and sliding of these indenters over the skin surface. Indentation depths, local (i.e. microscopic) coefficients of friction and Young's modulus of the stratum corneum were also varied. For comparison purpose and for isolating effects arising purely from the skin microstructure, a geometrically-idealised equivalent multi-layer model of the skin was also considered.The multi-asperity contact induced by the skin topographic features in combination with a non-idealised geometry of the skin layers lead to levels of shear stresses much higher than those produced in the geometrically-idealised case. These effects are also modulated by other system parameters (e.g. local coefficient of friction, indenter radius).These findings have major implications for the design and analyses of finite element studies aiming at modelling the tribology of skin, particularly if the focus is on how surface shear stress leads to damage initiation which is a process known to occur across several length scales.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.