Abstract

According to recent studies, a new paradigm in the geometric modeling of lattice structures based on subdivision surfaces for additive manufacturing overcomes the critical issues on CAD modeling highlighted in the literature, such as scalability, robustness, and automation. In this work, the mechanical behavior of the subdivided lattice structures was investigated and compared with the standard lattices. Five types of cellular structures based on cubic cell were modeled: struts based on squared or circular section, with or without fillets and cell based on the subdivision approach. Sixty-five specimens were manufactured by selective laser sintering technology in polyamide 12 and tensile and fatigue tests were performed. Furthermore, numerical analyses were carried out in order to establish the stress concentration factors.Results show that subdivided lattice structures, at the same resistant area, improve stiffness and fatigue life and reduce stress concentration while opening new perspectives in the development of lattice structures for additive manufacturing technologies and applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.