Abstract
Over the last three decades, several experimental initiatives have been launched with the goal of observing radio-frequency signals produced by ultra-high energy neutrinos (UHEN) interacting in solid media. Observed neutrino event signatures comprise impulsive signals with duration of order the inverse of the antenna+system bandwidth (∼10 ns), superimposed upon an incoherent (typically white noise) thermal noise spectrum. Whereas bulk volume scattering (VS) of radio-frequency (RF) signals is well-studied within the radio-glaciological communities, polar ice-based neutrino-detection experiments have thus far neglected VS in their signal projections. As discussed herein, coherent volume scattering (CVS, for which the phase of the incident signal is preserved during scattering) generated by in-ice neutrino interactions may similarly produce short-duration signal-like power, albeit with a slightly extended time structure, and thereby enhance neutrino detection rates, whereas incoherent (randomized phase) volume scattering (IVS) will persist for O(100 ns), appearing similar to thermal white noise and therefore reducing the measured Signal-to-Noise Ratio (SNR) of neutrino signals. Herein, we present the expected voltage profiles resulting from in-ice volume scattering as a function of the molecular scattering cross-section, for both CVS and IVS, and assess their impact on UHEN experiments. VS contributions are currently only weakly constrained by extant data; stronger limits may be obtained with dedicated calibration experiments.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.