Abstract
Abstract Lower Triassic limestones contain giant ooids (>2 mm) along with other precipitated carbonate textures more typical of Precambrian strata. These features appear to have resulted from changes in seawater chemistry associated with the end-Permian mass extinction, but quantifying the carbonate chemistry of Early Triassic seawater has remained challenging. To constrain seawater carbonate saturation state, dissolved inorganic carbon, alkalinity, and pH, we applied a physicochemical model of ooid formation constrained by new size data on Lower Triassic ooids from south China, finding that the Triassic giant ooids require a higher carbonate saturation state than typifies modern sites of ooid formation. Model calculations indicate that Early Triassic oceans were at least seven times supersaturated with respect to aragonite and calcite. When combined with independent constraints on atmospheric pCO2 and oceanic [Ca2+], these findings require that Early Triassic oceans had more than twice the modern levels of dissolved inorganic carbon and alkalinity and a pH near 7.6. Such conditions may have played a role in inhibiting the recovery of skeletal animals and algae during Early Triassic time.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.