Abstract

Abstract Empirical models relating forest attributes to remotely sensed metrics are widespread in the literature and underpin many of our efforts to map forest structure across complex landscapes. In this study we compared empirical models relating Landsat reflectance to forest age across Oregon using two alternate sets of ground data: one from a large (n ∼ 1500) systematic forest inventory and another from a smaller set of plots (n < 50) deliberately selected to represent pure conditions along predefined structural gradients. Models built with the smaller set of targeted ground data resulted in lower plot-level mapping error (root mean square error) and higher apparent explanatory power (R2) than those built with the larger, more widely distributed inventory data. However, in two of the three ecoregions considered, predictions derived from models built with the smaller ground data set displayed a bias relative to those built with the larger but noisier inventory data. A modeling exercise, wherein mapped forest age was translated into carbon, demonstrated how nonlinear ecological models can magnify these prediction biases over landscapes. From this study, it is clear that for mapping purposes, inventory data are superior to project-specific data sets if those data sets are not representative of the full region over which mapping is to be done.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.