Abstract

Huntington's disease (HD) is a neurodegenerative disorder resulting from the expansion of a glutamine repeat (polyQ) in the N-terminus of the huntingtin (htt) protein. Expression of polyQ-containing proteins has been previously shown to induce various cellular stress responses. Among these, activation of the c-Jun N-terminal kinase (JNK) cascade has been observed in cellular models of HD. However, the implication of the JNK pathway has not previously been evaluated in the striatum of HD animal models. Here we report that the JNK pathway participates in HD pathology in a rat model of the disease. Increased phosphorylation of the JNK target c-Jun was observed as early as 4 weeks and persisted for 13 weeks after lentiviral-mediated expression of htt171-82Q. In order to assess the importance of this pathway in HD pathology, JNK inhibitors including dominant-negative mutants of upstream kinases (ASK1 K709R, MEKK1 D1369A), a c-Jun mutant (Δ169c-Jun) and the active domain of the scaffold protein JIP-1/IBI (IBI-JBD) were tested for their ability to mitigate the effect of htt171-82Q. The overexpression of MEKK1 D1369A and JIP-1/IBI reduced the polyQ-related loss of DARPP-32 expression, while the other inhibitors had no effect. In all cases, the formation of EM48-positive htt inclusions and P-c-Jun immunoreactivity were unaltered. These results suggest that JNK activation is involved in HD and that blockade of this pathway may be of benefit in counteracting HD-related neurotoxicity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.