Abstract
This article explores the problem of investigate Single Sampling Plan (SSP) by attributes under Bayesian theory and illuminate its importance methodology in manufacturing industries. The modern technological advancements and well monitoring of the production process are facilitate to enhance the standard of product. In such situation products are not meeting the specified quality standards is a rare phenomenon. However, random fluctuations in producing processes might lead some merchandise to an imperfect quality. It has been assumed that the number of defects per unit of product follows a Zero Inflated Poisson distribution (ZIP) and the Gamma distribution is the conjugate prior to the average number of non-conformities per item. This article proposed a new sampling procedure as Bayesian Single Sampling plan (BSSP) using Gamma-Zero Inflated Poisson (G-ZIP) distribution. Necessary tables for the selection of optimal plan parameters and numerical illustrations were made for this sampling plan. Furthermore, the applicability and usefulness of the proposed Bayesian sampling plan under the G-ZIP model have been demonstrated by a few examples and comparisons were made with other sampling plans.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Recent Technology and Engineering (IJRTE)
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.