Abstract
The gene encoding the manganese-containing superoxide dismutase (MnSOD) of Enterococcus faecalis was characterized. It is transcribed monocistronically from an upstream promoter identified by rapid amplification of cDNA ends (RACE)-PCR. A sodA mutant was constructed and characterized. Growth of the mutant strain was not significantly different from that of its wild-type counterpart in standing and aerated cultures. However, the mutant was more sensitive towards menadione and hydroperoxide stresses. The response to H(2)O(2) stress was analysed in more detail, and the mode of killing of this oxidant was different under anaerobic and aerobic conditions. Cultures grown and challenged under anaerobic conditions were highly sensitive to treatment with 35 mM H(2)O(2). They were largely protected by the iron chelator deferoxamine, which suggested that killing was mainly due to an enhanced Fenton reaction. In contrast, neither strain was protected by the iron chelators deferoxamine and diethylenetriaminepentaacteic acid when grown and challenged under aerobic conditions, which suggested that inactivation of the cells by H(2)O(2) was due to another killing mode. The sodA mutant was more sensitive under these conditions, showing that MnSOD is also important for protecting the cells from damage under aerobic conditions. Finally, the MnSOD of Ent. faecalis may be considered to be a virulence factor, since survival of the corresponding mutant strain was highly affected inside mouse peritoneal macrophages.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.