Abstract

Fungal metabolomics is a field of high potential but yet largely unexploited. Focusing on plant-pathogenic fungi, no metabolomics studies exist on their resistance to fungicides, which represents a major issue that the agrochemical and agricultural sectors are facing. Fungal infections cause quantitative, but also qualitative yield losses, especially in the case of mycotoxin-producing species. The aim of the study was to correlate metabolic changes in Fusarium graminearum strains' metabolomes with their carbendazim-resistant level and discover corresponding metabolites-biomarkers, with primary focus on its primary metabolism. For this purpose, comparative 1H NMR metabolomics was applied to a wild-type and four carbendazim-resistant Fusarium graminearum strains following or not exposure to the fungicide. Results showed an excellent discrimination between the strains based on their carbendazim-resistance following exposure to low concentration of the fungicide (2 mg L−1). Both genotype and fungicide treatments had a major impact on fungal metabolism. Among the signatory metabolites, a positive correlation was discovered between the content of F. graminearum strains in amino acids of the aromatic and pyruvate families, l-glutamate, l-proline, l-serine, pyroglutamate, and succinate and their carbendazim-resistance level. In contrary, their content in l-glutamine and l-threonine, had a negative correlation. Many of these metabolites play important roles in fungal physiology and responses to stresses. This work represents a proof-of-concept of the applicability of 1H NMR metabolomics for high-throughput screening of fungal mutations leading to fungicide resistance, and the study of its biochemical basis, focusing on the involvement of primary metabolism. Results could be further exploited in programs of resistance monitoring, genetic engineering, and crop protection for combating fungal resistance to fungicides.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.