Abstract

The ability of neural networks to process information intelligently has allowed them to be successfully applied in the fields of information processing, controls, engineering, medicine, and economics. The brain-like working mode of a neural network gives it incomparable advantages in solving complex nonlinear problems compared with other methods. In this paper, we propose a feedforward DNA neural network framework based on an enzyme-free, entropy-driven DNA reaction network that uses a modular design. A multiplication gate, an addition gate, a subtraction gate, and a threshold gate module based on the DNA strand displacement principle are cascaded into a single DNA neuron, and the neuron cascade is used to form a feedforward transfer neural network. We use this feedforward neural network to realize XOR logic operation and full adder logic operation, which proves that the molecular neural network system based on DNA strand displacement can carry out complex nonlinear operation and reflects the powerful potential of building these molecular neural networks.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.