Abstract

For security-critical embedded applications Elliptic Curve Cryptography (ECC) has become the predominant cryptographic system for efficient key agreement and digital signatures. However, ECC still involves complex modular arithmetic that is a particular burden for small processors. In this context, Bernstein proposed the highly efficient ECC instance Curve25519 that particularly enables efficient software implementations at a security level comparable to AES-128 with inherent resistance to simple power analysis (SPA) and timing attacks. In this work, we show that Curve25519 is likewise competitive on FPGAs even when countermeasures to thwart side-channel power analysis are included. Our basic multicore DSP-based architectures achieves a maximal performance of more than 32,000 point multiplications per second on a Xilinx Zynq 7020 FPGA. Including a mix of side-channel countermeasures to impede simple and differential power analysis, we still achieve more than 27,500 point multiplications per second with a moderate increase in logic resources.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.