Abstract
A higher-order layerwise model is proposed to determine stress intensity factors using virtual crack closure technique for single-edge-crack aluminum plates with patch repairs. The present method is based onp-convergent approach and adopts the concept of subparametric elements. In assumed displacement fields, strain-displacement relations and three-dimensional constitutive equations of layers are obtained by combination of two- and one-dimensional shape functions. Thus, it allows independent implementation ofp-refinement for in-plane and transversal displacements. In the proposed elements, the integrals of Legendre polynomials and Gauss-Lobatto technique are employed to interpolate displacement fields and to implement numerical quadrature, respectively. For verification of the present model, not only single-edge-crack plates but also V-notch aluminum plates are first analyzed. For patched aluminum plate with behavior of complexity, the accuracy and simplicity of the present model are shown with comparison of the results with previously published papers using the conventional three-dimensional finite elements based onh-refinement.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.