Abstract

A numerical study was carried out to investigate the performance of a two-layer model for predicting turbulent gas-particle flows in rough pipes. An Eulerian–Eulerian two-fluid formulation was used to model both the gas and solid phases for turbulent gas-particle flow in a vertical tube. The stresses developed in the particle phase were calculated using the kinetic theory of granular flows while the gas-phase stresses were described using an eddy viscosity model. The two-fluid model typically uses a two-equation k-ɛ model to describe the gas phase turbulence, which includes the suppression and enhancement effects due to the presence of particles. For comparison, a two-layer model was also implemented since it has the capability to include surface roughness. The current study examines the predictions of the two-layer model for both clear gas and gas-solid flows in comparison to the results of a conventional low Reynolds number model. The paper specifically documents the effects of surface roughness on the turbulence kinetic energy and granular temperature for gas-particle flow in both smooth and rough pipes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.