Abstract

A newly developed process called time-modulated chemical vapour deposition (TMCVD) was employed to deposit smooth polycrystalline diamond films onto silicon substrates using both microwave plasma CVD (MPCVD) and hot-filament CVD (HFCVD) systems. The distinctive feature of the TMCVD process, which separates it from the conventional diamond CVD process, is that it pulses methane (CH 4) at different flow rates for different time durations into the vacuum reactor during the entire diamond CVD process. Generally, both MPCVD and HFCVD systems produced results that displayed similar trends, except that the growth rate results obtained using the two CVD systems were conflicting. In comparison to the conventional CVD diamond films, the time-modulated films, deposited using both MPCVD and HFCVD techniques, were generally found to be (i) smoother, (ii) consisted of smaller diamond crystallites and (iii) displayed approx. similar film quality. The diamond–carbon phase purity of the as-grown films was assessed using Raman spectroscopy. In addition, the surface roughness, Ra, values of the deposited films were obtained using surface profilometry.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.